

Module 6: Water Withdrawals, Uses, and Agricultural Irrigation

1. Water Withdrawals and Uses

Water for Energy Production

- **Thermal Power:** Water is essential for cooling processes in fossil fuel and nuclear power plants.
- **Hydropower:** Utilizes the potential and kinetic energy of water stored in reservoirs or flowing in rivers to generate electricity; hydropower plants primarily return water to the flow after use^[1] ^[2].
- **Conflicts:** Storage reservoirs designed for hydroelectric generation, irrigation, and flood control must balance conflicting needs—in particular, keeping reservoirs full for energy/irrigation versus maintaining empty space for flood protection^[3].

Water for Agriculture

- **Largest User:** Agriculture consumes about 70% of freshwater withdrawals globally, mainly for irrigation^[4].
- **Uses:** Irrigation, pesticide and fertilizer application, livestock, and food processing.
- **Environmental Concerns:** Overuse and poor management can reduce river flows, raise soil salinity, and damage wetlands^[4].

Water for Flood Control

- Reservoirs and dams are managed to store excess water during heavy rainfall, reducing downstream flood risk.
- **Challenge:** Flood control requires empty storage capacity, which may conflict with full reservoirs needed for irrigation or power^[3] ^[5].

2. Analysis of Surface Water Supply

- **Assessment** includes measurement of river flows, rainfall, runoff, and storage in lakes or tanks. Modern techniques include real-time monitoring, hydrological modeling, and seasonal demand forecasting.
- **Surface water supply** is compared to all consumptive demands to manage shortages, plan allocation, and implement conservation measures^[6].

3. Water Requirement of Crops in India

Crops and Crop Seasons

- **Kharif (monsoon; June–Oct):** Paddy (rice), maize, millet, sorghum, cotton, groundnut—sowing aligns with monsoon onset.
- **Rabi (winter; Oct–March):** Wheat, barley, chickpea, mustard, peas—sown after the withdrawal of the monsoon.
- **Zaid (summer; March–June):** Short-duration crops like watermelon, vegetables, and some pulses^[7].

Cropping Pattern

- Refers to the proportion and sequence of various crops grown in a region or farm.
- Choices are influenced by water availability, climatic conditions, soil type, and socio-economic considerations.

4. Duty and Delta

Term	Definition	Typical Values (India)
Delta	Total depth of water (in cm) required by a crop during its base period	Paddy: 120–140cm, Wheat: ~50cm
Duty	Area (in hectares) irrigated per unit flow (1 cumec) of continuous water	Paddy: 400–800 ha/cumec ^{[8] [9]}

- **Duty:** Increases with better irrigation methods, land leveling, and efficient designs.
- **Delta:** Varies with crop, climatic zone, and crop duration.

5. Quality of Irrigation Water

Water quality impacts crop yield and soil health.

- **Parameters:**
 - **Salinity:** Measured as Electrical Conductivity (EC). C1 (0–0.25 dS/m) and C2 (0.25–0.75 dS/m) classes are suitable for irrigation; higher classes cause salinity problems^[10].
 - **Sodicity:** High sodium concentration damages soil structure. Evaluated through Sodium Adsorption Ratio (SAR) and related indices.
 - **Alkalinity & Specific Ion Toxicities:** High residual sodium carbonate (RSC), chloride, boron, and nitrate affect crops and soil^[10].
- **Water with C3/C4 salinity or high SAR/RSC is generally unsuitable without special management.**

6. Soil-Water Relationships

- **Root Zone Soil Water:** The soil layer from which crop roots extract water, typically 0–60cm.
- **Field Capacity:** Maximum soil water content after excess has drained.
- **Wilting Point:** Minimum soil moisture required to prevent plant wilting.
- **Available Soil Moisture:** Difference between field capacity and wilting point, important for scheduling irrigation^[11].

Infiltration

- **Infiltration Rate:** Speed at which water enters soil; affects percolation, runoff, groundwater recharge, and frequency of irrigation.
- **Factors:** Soil texture, structure, compaction, organic matter, and moisture content.

7. Consumptive Use and Irrigation Requirement

- **Consumptive Use (CU):** Total water lost via evaporation + transpiration by a crop from planting to harvest.
- **Irrigation Requirement (IR):** Net water needed from irrigation to supplement effective rainfall.

$$IR = \text{Consumptive Use} - \text{Effective Rainfall}$$

Frequency of Irrigation

- Determined by:
 - Crop type and stage, soil water-holding capacity, climatic conditions, and irrigation method.
- Common intervals: 7–15 days for many crops when traditional surface methods are used^[7].

8. Methods of Water Application

Method	Description	Advantages	Limitations
Surface Irrigation	Water flows over and across the field (furrow, basin, border)	Simple, low cost	Losses via runoff & deep percolation
Sub-surface	Water applied below the soil surface (via pipes or trenches)	Minimal evaporation loss	Installation cost, not suitable for all soils/crops ^[12]
Sprinkler	Water sprayed over crops like rainfall using pipes & pumps	Suitable for undulating land, uniform application	Higher energy cost, wind drift ^[13]
Drip/Trickle	Delivers water directly to root zone via emitters	High efficiency, reduced evaporation, water-saving	High initial cost, maintenance ^{[13] [12]}

- **Choice of method** depends on crop, soil, land shape, water quality, and economic factors.

Summary Table: Key Irrigation Concepts

Concept	Description/Importance
Water Withdrawals	Primarily for agriculture, energy, and flood control
Water for Agriculture	Dominant user (70% globally), vital for food security
Surface Water Supply	Analysis involves hydrology, demand forecasting, reservoir operations
Crop Patterns	Shaped by monsoon timing, water availability, economic priorities
Duty & Delta	Indicate efficient use of irrigation water
Water Quality	Salinity, sodicity, and ions impact crop yield and soil health
Soil-Water Relations	Root zone moisture, infiltration, and soil type affect irrigation needs
Irrigation Methods	Choice depends on water, crop, soil, and cost; includes surface, subsurface, sprinkler, and drip systems

An integrated understanding of water withdrawals, crop requirements, soil-water interactions, and irrigation practices is essential for ensuring food security, optimizing water use efficiency, and sustaining agricultural productivity under variable environmental and resource conditions. [3] [4] [8] [10] [11] [13] [7] [9] [12]

**

1. <https://www.planete-energies.com/en/media/article/energy-and-water-are-closely-intertwined>
2. <https://www.energy.gov/eere/water/types-hydropower-plants>
3. <https://www.fao.org/4/y5582e/y5582e04.htm>
4. https://energypedia.info/wiki/Water_Use_in_Agriculture
5. https://www.icold-cigb.org/GB/dams/role_of_dams.asp
6. https://hydrology.dnr.sc.gov/pdfs/basin-planning/Methods-for-evaluating-water-availability_SCDNR_01_06_21.pdf
7. https://indiaagronet.com/indiaagronet/water_management/CONTENTS/Crop Planning.htm
8. <https://www.slideshare.net/slideshow/irrigation-copy/66229193>
9. <https://www.youtube.com/watch?v=wMrY1BYHLC4>
10. <http://eagri.org/eagri50/SSAC122/lec27.pdf>
11. https://www.jircas.go.jp/sites/default/files/publication/intlsymp/intlsymp-10_35-44.pdf
12. https://www.geo.fu-berlin.de/en/v/iwrm/Implementation/technical_measures/Irrigation-systems/subsurface_irrigation/index.html
13. <https://cementconcrete.org/water-resources/what-is-irrigation-types-methods/2047/>